
I] i

(NASa_! .__.336) ASSESSI,*',_G l_- I"_I'>ACT ",i:
I TEMS F inal

MODELIf_r5 LIMITS ON TNTcLL GE_T SYS

Report (Search Technology) 52 p CSCL 12A

H1 59

unclas

0309050



|

i
" - i

_ i

|

1

1
: i

!

.... i

......... • o -- • _

_-- =_

i

............. - . ;-'. _S_.......

_ " ' ' "- "2": ..... i

l



NASA Contractor Report 4336

Assessing the Impact

of Modeling Limits

on Intelligent Systems

William B. Rouse and John M. Hammer

Search Technology, Inc.

Norcross, Georgia

Prepared for

Langley Research Center

under Contract NAS1-19021

N/ .SA
National Aeronautics and

Space Administration

Office of Management

Scientific and Technic&
Information Division





SUMMARY

This report is concerned with validating the knowledge bases underlying intelligent

systems. In particular, the concern is with identifying and remediating modeling limits that

are likely to lead to unacceptable consequences in terms of system performance or safety.

The first part of this report provides a general conceptual framework for considering the roles

in intelligent systems of models of physical, behavioral, and operational phenomena. Ten

types of modeling limit are identified and their likely consequences discussed. The second

part of this report describes a methodology for identifying limits in particular intelligent

systems, and illustrates the use of the methodology via an experimental evaluation of the

pilot-vehicle interface within the Pilot's Associate. The essence of this methodology

involves interactive probing and tracing of concept graph representations of knowledge

bases. The insights provided by the results of this experiment demonstrate the utility of this

methodology. The third and final part of this report oumnes the requirements and

functionality for a computer-based knowledge engineering environment which would

embody the approach advocated and illustrated in earlier discussions. Issues considered

include the specific benefits of this functionality, the potential breadth of applicability, and

technical feasibility.



INTRODUCTION

Models of physical,behavioral,and operationalprocessesoften form the basisfor

developingintelligentsystems.Thesemodelsareembeddedin softwaresystemsin termsof

rules,networks,equations,and algorithms. The goal is to use thesemodelsasa meansto

automate,offer expert advice, and perhaps provide explanations. In addition, this

functionalitymustbeprovidedwithoutcompromisingsoftwaresafety.

Therearea variety of methodsfor developingmodels. They may be derived from

first principles,identified from data,or compiledvia knowledgeengineering.Regardlessof

themethodemployed,theresultingmodelsinevitablycannotcaptureall of the phenomena of

interest. This is true for all behavioral, physical, and operational phenomena -- the limits of

modeling are fundamental (Casti, 1989; Glymour, et al., 1987; Rouse, 1980; Rouse & Hunt,

1982; Rouse & Morris, 1986; Rouse, et al., 1989). In this report, the nature and implications

of these limits are considered for these three classes of phenomena.

There are several types of limit. The data sample, upon which a model is based, is

always finite. The variables chosen to capture a phenomenon may be incomplete or

incorrect. Structural assumptions may be inadequate or inappropriate. Parameter estimates

may be non-unique. These limits hold for both signal processing and symbol processing

models (Rouse, et al., 1990).

These types of limit have important implications. The most obvious, of course, is the

possibility of not fully modeling the phenomena of interest. Other implications include a

poor fit relative to the possibilities with other models, or multiple equally good fits with two

or more models. As a result, it is quite feasible for system control to be based on non-unique

state estimates and/or system reasoning to be based on non-unique explanations.

Non-uniqueness can occur either because a chosen model can produce multiple state

estimates or multiple explanations that fit the available data, or because the model chosen

was only one of multiple models that fit the data. In either case, non-uniqueness can lead to,

for example, the conclusion that an aircraft's landing gear are not locked in place when, in

2



fact, a sensorfailure in thegearlight circuit could also haveproducedthesamesymptoms.

Model-basedreasoningthat doesnot include a representationof the gearlight circuit will

"confidently"reachtheconclusionthatthegeararenot lockedin place.

The consequencesof the abovelimits and implicationsareshownin Table 1. The

consequencesdiffer dependingon whether the intelligent systemis for the purposeof

supporting humansvia computer aiding, or replacing humansvia automation. These

consequences,however,areveryundesirablein bothcases.

What is neededare methodsfor detectingthesetypesof consequence,diagnosing

their causes,and correctingor compensatingaccordingly. This report presentsan overall

formulation of this problem and discussesan initial approachto developingthe required

methods. In addition,concludingdiscussionsin this report considerthe implicationsof the

proposedapproachfor addressingsoftwaresafetyissues(Pamas,et al., 1990;Rushby,1988).

PROBLEMFORMULATION

Figure 1depictstheoverallproblembeingaddressed.An intelligent systeminteracts

with theworld by sensinginputsx and producing outputs _. The intelligent system includes

models Mi, i = 1,2, .... These models provide the basis for decision making, as well as

functions that make changes to the world. The relationship between decisions and functions

is such that a decision is a choice, by the intelligent system, to use a function or to use one of

multiple available functions.

Model M i receives inputs u i and produces outputs v i. The input vector u i is

composed of elements of x and vj k/j _ i. Similarly, the output vector v i is composed of

elements 2_and uj k/j _ i.

Two classes of limitation may have undesirable effects on the relationship between

the intelligent system and the world. One class concerns the nature of the models. Four

types of limitation are of interest in this class:



Implications of

Limits

Inappropriate
Model

Inadequate
Model

Non-Unique
Model

Consequences

Aiding

Advice

Wrong

Advice

Incomplete

Misplaced

Compliance

Automation

Control

Wrong

Control

Incomplete

Misplaced
Confidence

Table 1. Consequences of Modeling Limits and Their Implications

4



©

._NI



• Mi ma.y be incomplete, e.g., one or more relationships between u i and v i
is missing,

• Mj may be inaccurate, e.g., representation of phenomena is a poor fit
relative to actual phenomena _, y_) in the world,

• M. may be incomD_ltible, e g, representation is complete and correct, but
1 - . , °.° , . .

level of representation is inconsistent with avadable x, necessary _,

and/or Mj V j _ i, and

• M i may be incorrect, e.g., representation of phenomena is a very bad fit
reIative to actual phenomena in the world.

An example of an incomplete model is the aforementioned lack of inclusion of a

representation of the effects of the gear light circuit. An illustration of an inaccurate model is

a first-order approximation of the response dynamics of the landing gear that, by definition,

ignores the inertia of the gear but, nevertheless, may provide "ballpark" predictions. An

incompatible model might accurately represent extension and retraction of the gear in terms

of exchanges of potential and kinetic energy but not provide an appropriate basis for control.

Finally, an incorrect model might represent gear extension and retraction as a simple

pendulum which neglects many important aspects of the dynamics of landing gear.

Considering remediation of these types of problem, relationships would be added to

incomplete models. Relationships would be modified, perhaps parametrically, for inaccurate

models. Incompatible models would be transformed structurally. Finally, incorrect models

would be replaced with a different representation or structure.

The second class of limitations relates to the ways in which x and _ are represented.

Six types of limitation are of interest, three for x and three for y:

• x may take on unanticipated values, e.g., {xi} take on values outside the
ranges specified in u,

• _ may require unanticipated values, e.g., {Yi} require values outside the
range supplied by v,

• x may have missing elements, e.g., x i is relevant but not included in u,

• _ may have missing elements, e.g., Yi is needed but not included in v,

• x may have extra elements, e.g., x i is included in u but not relevant, and

° _ may have extra elements, e.g., Yi is included in v but not needed.

6



Theselimitations relateto underspecificationor overspecificationof the inputs and outputs

between the intelligent systemand the world. Underspecificationimplies that relevant

phenomenain theworld arenot modeled;overspecificationmeansthat phenomenathat are

modeledarenotrelevant.

Examplesof unanticipatedvaluesmight be statevariables such as velocities or

pressurestaking on valuesoutsidetherangesexpectedby the software,andcontrol signals

(e.g., position commands)from the softwarebeing suchthat the world inherently cannot

satisfythem. Illustrationsof missingelementsincludemissingstatevariablesandcontrols--

not infrequentlythisproblemmayoccurin conjunctionwith an incompletemodelwherethe

missing relationship(s) involves the state variables and controls identified as missing.

Examplesof extraelementsincludemeasurementof variablesthat do not play a role in the

phenomenaof interestandproductionof controlsignalsthatdo not affect thesephenomena.

This type of lack of understandingof thephenomenabeingmodeledmay evidenceitself in

conjunctionwith thedevelopmentof amodelthatis incompleteand/orhasmissingelements.

The ten types of limitation outlined in this sectioncould lead to several typesof

consequence.If a decision,which is basedon oneor moremodels,is wrong,functionswill

beactivatedinappropriately. A function canbe thoughtof asa controller,anda decisionas

turning the controller on or changingthecontroller'ssetpoint(i.e., its goal). A controller

turned on or off inappropriatelyrepresentsan error of commissionor omission, which

usuallyleadsto degradedperformance.If adecisionresultsin anincorrectsetpoint(or goal),

the controller will inexorably pursue this goal and possibly take the system into an

undesirablestatesuchasoscillationor instability. Consequencescanalsoincludeinaccurate,

inadequate,or incorrectperformanceof a function -- of course,thesetypesof problemare

notuniqueto intelligentsystems.

7



SOLUTIONREQUIREMENTS

Remediatingmodelingproblemswithin intelligent systemsinvolves accomplishing

threethings:

• Determiningwhat happened -- detecting that unacceptable consequences
have occurred.

° Determining _ it happened -- _ the causes of unacceptable
consequences, i.e., problems with M, x, or _.

• Determining how to remediate -- _ for consequences and/or
causes.

Each of the three elements of the solution can be approached in three ways, as shown

in Table 2. In addition, each of these three approaches can be pursued during three different

time periods or phases: design and development, test and evaluation, and operational use. A

balance among these three approaches and phases can provide a comprehensive framework

for detecting, diagnosing, and compensating.

Analytical/simulation methods enable one to predict consequences of initial design

choices and, hence, redesign before the fact. This is the predominant approach in most

design endeavors. The disadvantage of this approach is that one inevitably predicts, and

designs solutions for, many possible consequences that will not actually occur.

Controlling via intelligent systems/automation has very desirable characteristics. By

responding during the fact, consequences do not propagate, at least not as far. Further,

resources are only devoted to problems that have occurred. Online detection, diagnosis, and

compensation as operational problems arise would represent the type of self-monitoring

skills that is one of the hallmarks of true expertise (Chi, Glaser, & Farr, 1988). While the

state of the art is such that the concept of an intelligent system monitoring itself is not yet

feasible, the approach outlined later in this report may enable taking a first step in that

direction.

The least preferred of the three approaches in Table 2 is observational methods in that

the remediation of problems depends on limitations manifesting themselves in terms of



PREDICTING

(Beforethefact)

DETECTION

(What)

CONTROLLING

(During the fact)

OBSERVING

(After the fact)

DIAGNOSIS

(Why)

COMPENSATION

(How)

_----- A nal y tic al/S i mu la t io n Methods

,_--------I n t e 11 i g e n t Systems/Automation

'_" Experimental Methods

I

Table 2. Alternative Approaches

9



unacceptableconsequences.The result is redesignafter the fact. When this approach is

necessary, it hopefully can be employed during design and development, or test and

evaluation, rather than during operational use. Of course, as Parnas and his colleagues

emphasize, problems inevitably emerge with software as use proceeds (Parnas, et al., 1990).

PRIMARY ISSUES

Several issues must be resolved if solutions are to be produced that satisfy the above

requirements. An obvious and predominant issue is the tradeoff between desirability and

feasibility. While self-monitoring systems (i.e., controlling in Table 2) are highly desirable,

they are unlikely to be feasible wiihout first pursuing approaches based on observation, and

subsequently developing methods of prediction. In other words, observation and prediction

will provide the basis for online control.

A particularly important issue concerns internal versus external evaluation. Internal

consistency and completeness is an important concern. Nguyen and his colleagues (Nguyen,

et al., 1987) discuss methods for identifying syntactic problems such as:

• Redundant, conflicting, subsumed, and circular rules,

• Unnecessary if conditions,

• Unreferenced and illegal attribute values,

• Unreachable conclusions, and

° Dead-end if conditions and dead-end goals.

These are clearly types of problem that one would rather not have in an intelligent system.

However, as Rushby (1988) emphasizes in his review of efforts similar to that of Nguyen,

assuring that these problems do not exist, i.e., assuring consistency and completeness, is not

sufficient for success.

Beyond the necessary condition of successful internal evaluation, one must also

satisfy the sufficient condition of successful external evaluation. This is the primary focus of

10



thetentypesof limitation discussedearlierin thecontextof Figure 1. Theexternalreference

for theselimitationsis theworld -- people,machines,andorganizations.

A central issue concernshow external reality is conceptualizedand how it is

accessed.This is a subtleissuebecauseoneis concernedwith assessingthe extentto which

the representationsembeddedwithin the designof the intelligent systemare incompatible

with theactualphenomenain thereal worldl Thesubtletyis dueto theneedto representthe

realworld in amannerbroaderthanimplied bythedesignbasisof thesystem.

This issueis of most concernat the "knowledgelevel," which lies abovethesymbol

level where representationsare encoded (Newell, 1981). At the knowledge level,

distinctionsamongbehavioral,physical,andoperationalphenomenaarenot usually crucial.

The focusis on comparingknowledgewithin the intelligentsystemto knowledgeaboutthe

real world, the sourceof which is inevitablyeitherhumanoperators,maintainers,managers,

or designers.In otherwords,in contrastto physicalmeasurements,knowledgeaboutthereal

world is notaccessibleotherthanthroughexperiencesandinterpretationsof humans.

Onealternativeapproachto representingthereal world is to evaluatethe intelligent

systemin the real world, perhapsvia a flight testor equivalent. While this type of test is

essentialto operationalcredibility, it canbea dangerousway to find the typesof problem

discussedearlier. Further,theexpenseof this typeof evaluationprecludesconsiderationof

the widerangeof conditionsthatthereal world will inevitablyproduceafter thesoftwareis

put into operationaluse(Parnas,et al., 1990).

Most fundamentally,suchanevaluationmay havelimited validity for addressingthe

typesof issueemphasizedin this report. Sincetestsof this typeareusually "designed,"it is

unlikely that onewould incorporatein thetestplanconditionsandphenomenaof whichone

is unaware,e.g.,situationsnotdescribedin thedesignrequirementsdocuments.Put simply,

it is difficult to know what you do not know. This difficulty can be lessenedby using

independenttestingorganizations(Parnas,et al., 1990)-- however,this difficulty is unlikely

to beeliminatedwith thisapproach.

11



Whatis neededis ameansof interactingwith thereal world in a mannerthatdoesnot

inherently constrain the world to operate in conformancewith the design basis of the

intelligent system. One obvious approachis to simply field the system. However, this

presentsevenmoreproblemsof costanddangerthan flight testor its equivalent. Thus,this

approachis only feasibleto theextentthatappropriatemeansof control(i.e.,Table2) canbe

established.

This problemcanbe resolved,at leastin part, by recognizingthefact thatevaluation

seldomrequiresall of reality. One need only have that portion of the real world for which

the knowledge embedded in the intelligent system needs evaluation. Thus, one can often

capture primary effects and low-order interactions by considering only a portion of the real

world within which the intelligent system is intended to operate. Nevertheless, this does not

mean that the problem of validating intelligent systems is now easy -- simply that it may be

tractable.

This idea is far from novel. It is quite common to initially evaluate displays, controls,

procedures, etc. using real pilots in a high-fidelity simulator. In a similar manner, engines

are initially evaluated using real operating conditions on a test stand, not an airplane.

While the basic approach is not new, the ways in which this approach has to be used

to satisfy the objectives of this project are rather different. In particular, the level at which

the intelligent system and the real world interact must be such that the phenomena

represented in the intelligent system and the phenomena accessed in tile real world are

comparable. Further, the interaction must be such that the real world is not inherently

constrained to reflect the intelligent system. This latter issue can be particularly problematic

when the portion of the real world of interest is highly adaptable -- as is the case with

humans.

Of course, adaptability is also the source of many individual differences in humans.

If these differences reflect varying preferences, then modeling problems are likely to be

primarily incompatibilities. On the other hand, if individual differences are due to

12



incompleteor incorrectviews of theworld, theneithertrainingor aiding (or both) is needed

to remediate thesedifferences. In general, it is quite common to find differencesin

preferences,but not commonto find that trainedand experiencedpersonnelhaveincorrect

modelsof theworld theyoperatewithin (Rouse,1990).

AN EXAMPLE

To furtherrefine theissuesoutlinedthusfar, aswell asillustratehow theseissuescan

be addressedand resolved, it is useful to continue the discussionin the context of an

example. The display selectionfunctionswithin the Pilot-Vehicle Interface(PVI) of the

Pilot's Associateprovide a rich illustration of how the impact of modeling limits can be

pursued*.

Display selection is performedby two modules: event-baseddisplay selection

(EBDS) andplan-baseddisplay selection(PBDS). EBDS resultsin displaysof bottom-up

data that aredeterminedto besignificantby assessors(i.e., situationassessmentor system

statusfunctions)or thePVI.

PBDS resultsin displaysof the informationneededto executeactiveplans. This is

consideredto be a top-downprocessbecausethe informationdisplayedis necessaryfor the

activeplans. Active plans andgoalscanoriginatefrom interpretationsof pilot actionsor

from plans createdby planners(i.e., missionplanning, tactics planning,or systemstatus

functions)thatwereproposedto andacceptedby thepilot.

Structure and Validity

To discuss validity in the context of this example requires some understanding of the

structure of PVI knowledge bases for EBDS, PBDS, and plan and goal interpretation.

* See Rouse, Geddes, & Curry (1988) and Rouse, Geddes, & Hammer (1990) for comprehensive discussions
of the PVI.

13



The EBDS knowledgebasestructureis organizedaroundthe conceptof a message

expert. This expertmaycorrespondeitherto a typeof assessment(e.g.,afterburnerblowout

or compressorstall), or it may correspondto a controller of a particulardisplay attribute

(e.g.,therangesettingof a mapdisplay). Eachmessageexpertexaminesthe global stateof

theaircraft,pilot, andexternalenvironmentbeforemakingadisplaychoice.

Becauseof its smallsizeandsimpleformat,correctinga messageexpertis relatively

straightforward.A messageexpertis rarelyover fifty linesof codein lengthandappearsto

be a table (although it is in fact invoking numerous"macros"). Its form is a simple

expressionof the display optionsand external stateconsidered,and thus its behavioris

apparent.Consequently,changingamessageexpertis relativelyeasy.

In contrast, PBDS validity dependson several PVI modules and is, therefore,

substantially more complicated than EBDS. PBDS choosesdisplays to satisfy the

information requirementsof active plans. Validity concerns may be raised in the

interpretation that leads to active plans or in the mapping of plans to information

requirements. For example,the interpretationprocesscould producean active plan that

shouldnot be active, or an active plan could be incorrectly connectedto an information

requirement.

Theconcernin this exampleis with therulesthat relateactionsto plans,andplansto

goals,aswell asinformationrequirementsassociatedwith plans. The objectiveis to assess

theexternalvalidity of theserulesrelativeto therealworld, which in thiscasemeansrelative

to pilots' perceptionsof goals,plans, and information requirements. To accomplishthis

objective,pilots mustbeprobedat thegoals,plans,andrequirementslevelsastheyperform

realpiloting tasks.

Knowledge Engineering

Knowledge acquisition for the PVI was done in several stages. The initial knowledge

was acquired using pencil and paper forms. Initial design of the knowledge representation

14



wascompletedbeforethis initial acquisition. Domainexpertswererequiredto expressthe

knowledgewithin this designstructure. After initial acquisition,considerablemodification

andrestructuringwererequiredto maketheknowledge-basedmodulesperformadequately.

Only rarely did theknowledgeengineersconsultdomainexpertsaboutthe suitabilityof this

modificationandrestructuring.

Later in theprocess,domainexpertcommentsoftenwerenotevenrecordedonpaper.

Instead,the knowledgeengineerinteractedwith the domainexpertto determinewherethe

problemwas in the PVI structure. The correctionto the structurewas the only permanent

result of thedomainexpert'soriginalcomment.

Somepeoplehold a naiveview that domainexperts'original commentsareusefulin

andof themselves.The only usefor suchinformationwould bea historical analysisof the

evolution of knowledgebases.However,the original information is of insignificantvalue

comparedto thatrepresentedin theoperationalknowledgebase.

The relationshipbetweenmodelinglimits and the knowledgebaseentities -- plans,

goals,informationrequirements,andrules-- is thatknowledgebasescanbeconsideredto be

models. The goals,plans,andinterpretationrules canbeconsideredto be a model of the

pilot's domain-- what the pilot doesandwhy it is done. Probingpilots for goalsandplans

will allow evaluationof this domain model in terms of the modeling limits previously

described.

Individool Differences

Individual differences among fighter pilots are often seen as a severe problem in

knowledge acquisition. Our experience is that this problem is rather minor for the following

reasons. First, two pilots may have different preferences but be unable to state any reasons

for their preferences. An example is the amount of clutter on a head up display (HUD).

Some pilots prefer much symbology on the HUD; others want only the minimum necessary.

15



Neithercanexplainwhy, andof course,this very fact preventsit from beingenteredinto a

knowledge base.

Second, pilots may differ strongly over relatively minor and insignificant points that

are of no consequence. For example, a message about a threat that was out of range could

contain either the literal range or a simple clause "out of range." The relative merit of one or

the other is of very little importance relative to the significant problems in constructing and

validating knowledge bases.

Third, improper framing of a question can result in the question being answered at the

wrong level of abstraction. For example, one could ask pilots for the range when the PVI

should report the radar resolution of a blip into two closely separated blips. However, to ask

this question in terms of range is likely to result in problematic answers because the correct

answer relates to whether or not the pilot is attacking these threat(s) or vice versa. We have

observed that domain experts do not usually restructure questions on their own -- they simply

answer whatever question is asked.

Concept Graphs

Within the Pilot's Associate are knowledge bases that can be viewed as concept

graphs. These concept graphs contain concepts c and links i. A concept c i describes a state

or assertion about the world. For example, a concept may be a normal-landing plan or an

information requirement for the r'ange to a threat aircraft. While a concept is similar to a

state variable in a conventional system, it is richer in several ways.

First, a concept has attributes, each of which may take on values. For instance, the

normal-landing plan has an attribute naming the destination airport. An information

requirement has an attribute giving the precision with which the range should be known.

Second, a link connects two concepts. Usually, a link is implemented by a

production system rule. This rule may modify attributes of existing concepts or instantiate

new copies of known concepts. The modifications caused by the rules are intended to model

16



the dynamics and semantics of-the domain. For example, three kinds of links --

interpretation, exclusion, and information need -- are used in the Pilot's Associate knowledge

bases.

An interpretation link describes (or models) when a pilot's action, plan, or goal, may

be explained by a higher level plan or goal. For example, the action of raising the landing

gear has four explanations as shown in Figure 2: gear cycle plan, climb, gear up landing, or

go around. If the pilot raises the gear, one of these four plans is an explanation. The plan

that is the most appropriate explanation is determined by the constraints in the rule that

implements (at a symbol level) the link. For example, gear up landing is an appropriate

interpretation (for most aircraft) if only at most one of three landing gear operates correctly,

even after several attempts (i.e., use of the gear cycle plan).

An exclusion link prevents two plans (or goals) from being active simultaneously

when such would make no sense. For example, the plans normal-landing and low-thrust-

landing exclude each other. The exclusion links are not shown in Figure 2, although a graph

could be drawn with both exclusion and interpretation links.

An information need link is between plans and information requirements. In the case

of the normal landing plan, the information required could include a map display of the

airport, radio and navigation frequencies for the particular airport, etc.

The benefits of concept graphs are in the structuring of the knowledge base design

and the designer's ability to perceive relationships in the knowledge base's design. The

design practices in knowledge engineering for the PVI illustrate an attempt to design before

substantial knowledge acquisition. Preliminary knowledge acquisition is done only to

structure the concept graph. After the initial structure is determined, a drawing of the

concept graph can be inspected for design errors. This visualization of the knowledge base

allows the knowledge engineer to view the knowledge level rather than the symbol level.

Similar visual aids such as control and data flow diagrams aid the software engineer.

17



normal

landing

lower

gear

low gear gear

thrust cycle up go

landing plan climb landing around

blow raise

down gear

gear

Figure 2. Partial Plan Goal Graph

18



Identifying Limits

The overall approach for evaluating the PVI is to probe pilots for plans and goals

related to their reactions to displayed information in the course of a flight scenario. To

assess validity, these probes should be of two types. First, pilots should be asked to react to

the goals, plans, and requirements inferred by applying the rule base to interpret their actions.

A negative response indicates a problem. However, a positive response only indicates the

absence of evidence of a problem. This is a very weak conclusion.

To strengthen the test, queries can be used whose negation represents support for the

knowledge base being tested. These queries have to be carefully designed to provide this

type of evidence. However, use of these types of query enable the kinds of results depicted

in Figure 3. Thus, for example, a negative response to a negative query (e.g., rejecting the

intent-based presentation of an FMS display) can be interpreted as strong support to the

extent that this query crisply counter-indicates the information requirements in the plan goal

graph.

The testing process is a backwards exploration through the concept graph(s) in search

of the error that caused the output to take an incorrect value, as judged by the pilot. The test

is initiated by focusing on a decision, an observable output y produced by the intelligent

system. Differences between the pilot and the intelligent system are traced backwards,

looking for limits of incomplete.ness, inaccuracy, incompatibility, and incorrectness as

described earlier.

The simplest description of the nature of a test is that it pursues in depth any

differences in judgment between the pilot and the knowledge-based system. When a pilot

action occurs, or at points in time where no action has occurred for some time, the pilot is

asked if he differs with the intelligent system's choice of displayed information. For

example, the pilot might want the tactical map display in the horizontal view (latitude and

longitude but no altitude) while the system is displaying a vertical view (azimuth and

19



POSITIVEQUERIES
(INDICATIVE OFRULE BASE)

WEAK STRONG

SUPPORT REJECTION

POSITIVE

RESPONSES

(AGREE)

NEGATIVE

RESPONSES

(DISAGREE)

WEAK STRONG

NEGATIVE QUERIES

(COUNTER INDICATIVE OF

RULE BASE)

Figure 3. Possible Test Results

20



elevationbut no range). The pilot'sjudgmentis interpretedascorrect,and the intelligent

systemis thereforeconsideredto beincorrect.

Eachdifferencein judgementis exploredindividually asfollows (seealsoFigure4).

o Find the information requirement (IR) that generated the unacceptable
display.

o Determine what caused the IR to be displayed. The error could be in
the concepts, the links between concepts, or both. An example of a
link error would be a plan that is correctly activated; however, its link
to the information requirement is incorrect. By the link being
incorrect we mean that the pilot does not want the information when
the plan is activated. By the plan being correctly activated we mean
that the pilot agrees that the plan should currently be activated.

o If the error is in the link, then a link from the plan to the IR should be
deleted and tracing ends for this difference.

o If a plan activation error occurs, then the process continues as below.
A plan activation error is either a plan that the system has activated
that should not be or a plan that the pilot says should have activated
but was not.

° At this point, there is a difference between pilot and intelligent system
over the activation of plans or goals. This activation occurs by a
bottom-up, rule-based search in the plan goal graph. Beginning at the
pilot action at the bottom of the graph, the search traverses links (fires
rules) to reach a plan that is currently active or could be active. From
the plan, the search continues upward to a goal, then to a plan, then to
a goal until reaching either a plan or goal that is already active. The
question then is whether the error is in the rule (link) that connects a
child to the parent, or is the child incorrectly activated?

. If the rule is erroneous, then further analyze the rule as described in
more detail in the later section and end the tracing of this error.

7. If the child is inappropriately activated, then continue tracing
recursively as described in step 5.

Int¢racting With the Pilot

When actual system behavior differs from what the pilot desires, one first should ask

if the aircraft system can express the desired behavior (e.g., is there a way to show such

behavior on the displays). If this cannot be done because the displays or aircraft simulation

do not support it, one should note .the discrepancy and continue. One should then find the

concept that seems to express the desired behavior if possible.

21



INFORMATION

REQUIREMENT

DIFFERENCE

-1

yes

no

yes

--_ rio

V

Figure 4. Identifying Limits

DIAGNOSE

P_N

DIAGNOSE

LINK

yes

22



Thenextstepis to verify thatthe internaldefinition of theconceptis the sameasthe

pilot's. Someexplorationwith the pilot is often necessarybecausea word may mean

different thingsto thepilot thanit doeswithin theconceptgraph. Theknowledgereceived

from the pilot must be reconceptualizedin terms of existing (or new) structuresin the

conceptgraph.

If onecannotunderstandthepilot, thenoneasksthepilot whattheconceptlookslike

concretelyon thedisplay,howthedisplayis drivenby sensedsignalsfrom theenvironment,

and how the display behaviorchangeswith changesin the sensedsignals. Even if the

behavior is of aircraft action systems(e.g., a jammer) rather than a display, the same

approachis appropriate.

An Illustration

In this illustration, a simple knowledge base is developed for a sample problem:

interpreting the raising and lowering of the landing gear. The knowledge base functionality

is limited to determining if the pilot's actions are sensible. Actions that do not make sense, as

well as inactions that do not make sense, would be processed elsewhere in pilot-vehicle

interface (i.e., the error monitor) and are not described here.

The key landing gear inputs are the commanded and actual gear position and the gear

lock indicator. It is assumed that all inputs are sensed, and that sensors may fail. A single

hydraulic system supplies the gear hydraulic cylinders and doors with sensors for pressure,

fluid quantity, and drive pump status. The backup to the hydraulic system is a pressured

bottle of air that is sufficient to lower the gear should the hydraulic system fail. The monitor

has access to engine, fuel, etc. status and the position of the aircraft relative to the runway.

While a simple knowledge base might only consider altitude, vertical velocity, and

airspeed, the following scenarios illustrate the richness of interpreting landing gear actions:

Failure to get a locked gear indication may be only a sensor failure.
The pilot may have other reasons (a fly by of the tower) to hope or
believe the gear are locked. After cycling the gear several times, the
pilot may choose to land while minimizing the load on the suspect

23



gearuntil that lastpossiblemoment. ThePVI could issuea message
in thissituation,but it shouldnot imply thatthepilot hascommittedan
error.

The pilot may be attempting a gear up landing because of hydraulic
failure or because two gear will not indicate locked.

The pilot may intend to delay lowering the gear until the last possible
moment because this action will commit him to landing. The aircraft
may have damage, particularly engines inoperative, that could prevent
a go-around if the gear are down.

The pilot might lower the gear early to increase drag tO decrease
speed. Although feasible on commercial aircraft, this is very unlikely
on fighter aircraft due to the effectiveness of fighter speedbrakes.

On takeoff, the pilot may leave the gear down due to hydraulic failure
and the intention to land immediately. Should the aircraft go too fast,
the error is really exceeding the gear speed limit, not failing to retract
the gear.

The indicators used in the rules - airspeed and altitude (AGL rather
than barometric altitude) may be erroneous due to sensor error. An
error message about lowering the gear based on these erroneous
signals would be confusing to the pilot.

Under some gear malfunctions, ejection is appropriate in tactical
aircraft.

The landing gear are lowered early because the hydraulic system is
starting to fail. If the pilot waited, the hydraulic system may not be
able to lower them at all.

In some areas, landings on highways rather than airstrips may be
possible. The PVI may not know the locations of highways, especially
those areas designated for landings.

The partial plan goal graph shown in Figure 2 provides an initial knowledge base. The

structure is partial because it deals only with actions related to landing gear. The plans

described in this knowledge base are defined as follows.

Normal-limcling: The normal landing plan in which all landing gear
are extended and properly locked into position.

Low-thrust-l_nOing: With limited thrust, the approach is flown at
higher speed and the gear are lowered late, only after the pilot
commits to the landing.

Gear-cycle-plan: The gear may be retracted and extended several

times to get them into the desired state: down and locked. This is

usually done if they do not lock in position on the fin'st attempt.

24



Climb: Climb is the normal successor to takeoff.

Gear-up-landing: Because the gear cannot be placed in the desired
state, they are all retracted and the aircraft lands while sliding down
the runway on its skin.

Go-around: If a landing does not look good, it will be rejected by
accelerating and climbing out over the runway. The aircraft will circle
for another try at landing. The gear would ordinarily be raised to
decrease drag and thus increase aircraft performance. However, if
they were blown down or were hard to lock, they may be left down.

Example Limits

Based on this illustration, examples of incomplete, inaccurate, incompatible, and

incorrect limits can be elaborated as follows:

Incomplete. In the example given there is a difficulty in interpreting the gear cycle

plan. If this plan is appropriate, then both lowering and raising the gear could be connected

to it. If extending the gear a second time corrects the problem, then it should be interpreted

as part of normal landing rather than gear cycle. The difficulty is that the correct

interpretation will not be known until after the action takes place, for the gear take a few

seconds to lower and lock into position.

One solution is to delete the link from lower gear to gear cycle plan. Then, lowering

will always be interpreted as some kind of landing plan. Although the cycling plan would

seem to contain both raising and lowering the gear, it should not. In fact, the gear cycle plan

should probably have been named retract-and-retry gear plan. The old name of the plan

suggests that both raising and lowering are parts of the plan. In fact, the semantics of

interpretation depend on a variety of links around the concept rather than the name of the

concept.

Links may be added as well as deleted. It is possible, depending on the hydraulic

design, for the gear-blow-down action to raise the landing gear (once) instead of lowering

them. This would be an advisable action should a gear up landing be prescribed and the

hydraulic system has failed. Whether this link should be added depends on whether the

25



designwouldpermit suchanactionto work. Thepresenceor absenceof check valves (that

permit one-way flow) would determine whether this would work.

Another example of concept modification is the addition of an arrested-landing plan.

During this plan, a hook is extended from the back of the aircraft. At touchdown (or the far

end of the runway), the hook catches a restraining wire that stops the aircraft in a very short

distance. An arrested landing is appropriate when the aircraft is overweight, braking has

limited effectiveness, or control over the aircraft would be limited after touchdown.

Inaccurate. A simple error that occurs frequently is the incorrect threshold for a state

variable. For example, the interpretation from lower gear to normal landing must look at

state variables to determine if lowering the gear is appropriate. One possible comparison

would be that the absolute altitude be below 2,000 feet (a constant) and the vertical velocity

must be less than another constant. It is possible for these constants to be erroneous.

Incompatible. There is another interpretation of using the absolute altitude to

determine whether the gear were lowered appropriately. Altitude may in fact be a poor state

variable to use. For instance, consider landing on a plateau. A better state variable would be

to use the distance from the runway, or perhaps position relative to glideslope and localizer

(assuming that is known). The more general problem here is that some state variables while

feasible are rather noisy for making good decisions. Because the state space is large,

choosing the right state variable is difficult. Asking the pilot which variables to use is not

necessarily going to work, because the variables mentioned in the explanation are still not

necessarily the best to use.

One place to begin is to explain the rule to the pilot and ask what conditions are not

accounted for. This may or may not work because the pilot may need to understand the

definitions of the concepts used. This is problematic when the concepts are abstract or are

purely the invention of the knowledge engineer. Another approach is to ask the pilot what

the rule should be and then attempt to translate that into the available concept space.

26



Whenmodifying theconceptgraphby changingconcepts,somecareis required.The

structureof the domain, to the extent it has already beenunderstood,should be used

whereverpossibleasa sourcefor theconceptsin the knowledgebase. In otherwords,one

shouldtry to usewhatonealreadyunderstandsasa modelfor theknowledgebasestructure.

In particular, employing precisedefinitions from a particular discipline or domain is

probably a goodidea. Practitionerscreatedprecisedefinitionsfor the samereasonsthat

knowledgebasesshouldemploythem.

Choosingconceptsat thecorrectlevel of abstractionis asignificantdifficulty. Pilots

often describeeventsratherthangoalsand plansassociatedwith a situation. Theyalsotalk

in termsof detailedexamplesratherthanabstractterms.Consequently,somedialoguewith a

pilot maybenecessaryto representknowledgein termsof goalsandplans,aswell asat the

appropriatelevelof abstraction.

Incorrect. A low thrust landing could be detected by a rule that looked for various

malfunction states in the aircraft engine. This would seem quite appropriate in an aircraft

equipped with a Pilot's Associate because such assessments about engine health would be

easily available to the intent interpretation function. However, the above approach is wrong.

Further, this example well illustrates the difference between planning and plan interpretation.

A planning approach is to prescribe what the pilot should do. Planning requires information

about engine health. Plan interpretation is to describe what the pilot is doing. A plan

understanding approach would use a rule that should look at the engine state(s) to determine

if only limited thrust is currently being employed. If the pilot has configured the aircraft for

a limited thrust landing (perhaps for practice), then that should be the interpretation.

Lowering the landing gear does increase drag. While there are some situations where

increased drag is desired to slow down the aircraft, landing gear are not used to do this in

tactical aircraft. If the gear are lowered at too high a speed, the doors will be torn from the

aircraft. These doors are likely to do further damage as they bounce through the air along the

underside of the aircraft.

27



AN EXPERIMENT

To test theproposedapproachto assessingmodelvalidity, datawerecollectedin a

flight simulator that is usedto demonstratethe Pilot's Associate. The data were pilots'

reactions to the choice of displays and display content in the simulator. The data were from

observation rather than controlled experimentation. The reasons for this type of data are the

level of maturity of the analysis and the similarity of observational data to knowledge

engineering.

The remainder of this section describes the aircraft, its displays, the simulated

mission, and the observation method. The aircraft simulation was a generic Advanced

Tactical Fighter (ATF). The primary displays were thirteen inch (diagonal) color raster

CRTs arrayed left to right. All CRTs were touch sensitive, and virtually all controls were

menus with touch sensitive buttons. Also part of the simulation, but not part of this study,

were sound/voice output, voice input, a touch sensitive plasma panel display/control between

the pilot's knees, and a simulated head up display (HUD).

The flight simulator behavior was predetermined and the pilot did not and could not

interact with the simulation. This was done to improve the reliability of the demonstration

and to demonstrate what the Pilot's Associate would look like in real-time. A live

demonstration would run several times slower than real-time. To create this "canned"

demonstration, the live message traffic between computers was collected and stored in a disk

file. To present the canned demonstration, the disk file was read, and messages were

transmitted to the display generator computers at the time given by the message timestamp.

The simulated mission was an escort of eight F-15E fighter-bombers (call sign

Hammer 01 through 08) by four ATF fighters (call sign Knight 01 through 04). The F-15E

aircraft flew at a low level along a pre-planned path to an enemy airbase. The ATF fighters

flew at high altitudes to draw off, chase off, or destroy any threat aircraft that endangered the

F-15E aircraft or the ATF fighters. After the F-15E aircraft completed their attack, they were

28



responsiblefor their own protection, and the ATF fighters were freed from escort

responsibilities.

The singlesubjectin this experimentwasa retiredUSAF pilot with five thousand

hoursin tacticalandstrategicmilitary aircraft. Hewasintimately familiar with themission,

the displays,and the Pilot's Associate. No time for familiarization was needed. This

situationis similarto apilot withconsiderableexperiencewith afieldedaircraft.

The datawereverbal reactionsof this pilot to displayselectionand contents. The

pilot wasencouragedto identify anydiscrepanciesor errorsin the displays. A numberof

probesweremadeby theexperimenter.A probewasaquestionaboutdisplaybehaviorthat

appearedquestionableto theexperimenter.

RESULTS

All of thedataweretimestampedwith themissiontime,whichwasalwaysdisplayed

in the crewstation. The dataand detailedanalysisappearin Appendix A. Someof the

analysiswasmadepossibleby viewing the demonstrationa secondtime andby examining

theprerecordedmessagetrafficdescribedearlier.

Table3 containstheexperimentaldataanda summaryof their interpretation.Each

table contains the time at which the discrepancywas detected,a description of the

discrepancyincluding a causal analysis,and a classification accordingto the scheme

presentedearlier.

DISCUSSION

Limits that have beenclassifiedas incomplete,incompatible,incorrect,or missing

input tend to havea singleinterpretation. Manyof thediscrepanciesare the result of the

modelsthat do not exist in thePVI, or of phenomenathat needto be incorporatedinto the

PVI. An exampleof a missingmodel is decidingwhetherto showto the pilot adaptive

aiding task allocation and executionmessages-- the communicationtask needsto be

29



Time

8:11:42

8:11:43

8:12:00

8:12:36

8:12:55

8:13:43

8:14:01

8:14:36

8:17:06

8:20:37

8:21:15

8:21:16

8:22:43

Clas_ of Problem

incorrect

output unanticipated

inaccurate

incorrect

bug

missing output

missing input

incompatible

missing input

incompatible

missing output

missing input

missing input

incorrect

incomplete

Explanation

New model is needed to decide whether to

communicate adaptive aiding actions to the

pilot.

Proposed plan name was not recognized by
pilot.

To avoid items only partially displayed at edge
of screen, display logic must assume display is
slightly smaller than its actual size.

Same as 8:11:42.

PVI knowledge base assumes incorrectly that
previous position display feature is only
implemented for threat aircraft.

On tactical map display, position of symbol for
pilot's own aircraft should be varied from center
to the bottom of the screen.

No representation of information requirements
for positions of cooperating aircraft.

No representation of information requirements
for portions of future route.

Same as 8:14:01.

SAM sites not labeled when they first appeared.

Same as 8:14:01.

Same as 8:17:06.

Adaptive aiding should not announce its task
allocations to the pilot if their effects can be
seen in the displays.

Model is needed to reflect fact that a substantial

display change in peripheral vision would
demand pilot attention.

Table 3. Data Analysis and Results

30



8:32:35

8:37:00

8:37:08

8:37:09

8:38:10

8:38:30

training

missinginput

incomplete

missinginput

incompatible

training

inconsistent

A mapdisplay changed to maximum range due
to lack of any nearby threats. With experience,
pilots would understand this.

Two display labels overlaid on each other. Only
one was necessary, because threats were part of

same group.

Particular offensive tactic requires display of
both offensive and defensive situation. Usually,
defensive situation (only missiles directed at

pilot's own aircraft are shown) determines
display range.

Perspective view switched to sideview for all
missile evasions. Did not consider whether

missile was launched from ground or at high
altitude.

Same as 8:14:01.

Same as 8:32:35.

Should change map display range enough to
show route home, rather than automatically
switching to maximum range

Table 3. Data Analysis and Results (cont'd)

31



modeledexplicitly. Examplesof missing phenomena are the missing inputs related to

cooperating flights, future routes, and mission routes.

On the other hand, the knowledge base did execute correctly for those problems it

was designed to represent. Selection of system displays (engine, fuel, weapons, sensors, and

electrical) functioned correctly. While there were some complaints from the domain expert

about the selection of these displays, these faulty selections turned out to be the choice of the

human pilot who flew the original mission when the data was collected for replay. This

"pilot" was not a domain expert and was choosing displays to show the capability of the

system. The selections were not intended to be appropriate for the situation. During the

replay, distinguishing these actions from those of the PVI and/or PA was difficult unless one

stared continuously at the menus.

Only a single parametric limit was found in the data -- this limit related to display

size. This is surprising given that the information requirements knowledge base has more

than five hundred information requirements in the knowledge base, each with five to ten

parameters.

An aspect of the data analysis we expected to use but did not was the process of

tracing links in the concept graph. Considerable "link tracing" has been done in the past to

diagnose problems in the knowledge bases. The explanation for this is consistent with the

previous observation that the limits uncovered were virtually all phenomena outside what

was represented in the knowledge base. The first steps in the tracing process can be

followed, but the process ends when the information requirement that needs to be expressed

in the knowledge base is not expressible in the current knowledge base. For example, there

was no way to express the information requirement for the position of certain friendly flights.

Another explanation for the limited use of link tracing is the nature of interactions

between the intent interpretation function, which is descriptive, and the planner function,

which is prescriptive. Intent interpretation describes what the pilot is doing, and planners

prescribe what the pilot should be doing. The combination of planning and plan

32



understandingtendto maskeachother'slimitations. The idealtestwould be to mn thePVI

without plannerinput. Unfortunately,thiswasnotpossiblewith availablereplaydata.

The natureof the aboveresultsalsocausedus to realizewhat can be termedroot

causesof thetypesof problemexhibited. Many largesystemsareconceivedof in termsof

functions. To dosowith thePilot'sAssociateis possiblebutresultsin missingits essence.

It is moreappropriateto think of thePilot'sAssociateasmakingdecisionsbetweentwo or

more alternatives. The Pilot's Associatemakesintelligent decisionsbetweenalternative

functionsor whetherto usea function-- it doesnotprovidefunctionsperse. In otherwords,

the Pilot'sAssociatefunctionsaredecisionfunctions,whichwill be referredto asdecisions

to emphasizetheirchoicebehavior.

From this perspective,interpretation of the root causesof some of the above

limitations is possible. Clearly, somefunctions shouldhave beenidentified as needing

controlling decisions. There are two reasonsfor not identifying this need. First, the

existenceof afunctionis notalwaysnoticedin adesign. For example,theprimarydecision

of adaptiveaidingwaswhetheror not to aid thepilot by allocatinga taskto automation.The

output by adaptiveaiding of a messageabout this decision was not consideredto be a

decisionin itself. This oversightoccurredeventhoughthis function was identifiedearly in

thedesignof adaptiveaiding.

Thesecondreasonfor functionswithout associateddecisionsrelatesto thegrowthof

functionality of intelligent systems. New functions are often addedto a systemunder

development.However,experiencewith thatfunctionis oftennecessarybeforethedesigners

cometo realizethat thefunctionis notalwaysappropriate.Oncethis is realized,adecision

elementcan be designedfor the function -- prior to this realization, such decisionsgo

unmade.

A secondroot causeis an insufficientnumberof inputs into a decision. Decisions

basedon a singleinput shouldquite naturallybesuspect.Thereasonis thatfew real world

phenomenadependona singleinput. Similarly,adecisionmadefrom albxgenumber(e.g.,

33



ten)inputsis alsosuspect.Relativelyfew realworldphenomenadependon largenumbersof

inputs. We did not find decisionsmadewith toomanyinputs,butwe foundmanymadewith

toofew inputs.

By the phrase"numberof inputsusedin making a decision"we meanthe number

referred to in making any specific decision,not the total numberused in all possible

outcomesof aparticulardecision.Assumethedecisioncanberepresentedasa decisiontree,

whereeachfork in thetreerepresentsareferenceto a singlevariable. Thenumberof inputs

usedto makeadecisionis definedasthedepthof thetree,i.e., thenumberof decisionpoints

in a path,ratherthanthesizeof thesetof inputs(theunionof all variablesacrossall forks).

This observationcanbegeneralizedto anentireknowledgebase. A plot of relative

frequencyversusnumberof inputsto a decisionmight bea usefuldesignaid in two ways.

First, relative improvementin a new versionof a knowledgebasecould be measuredby

comparingits plot to its predecessor'splot. Second,suchplots could be usedas absolute

judgementsof maturity. Assumingthat a causaltheoryof the domaincould give rise to a

prescriptiveplot, areferencewouldthenbeavailable,relativeto whichtheactualknowledge

baseplot couldbecompared.

CONCLUSIONS

In this section,we both review the resultsof this effort as well as discusstheir

implications for computer-basedmethodsandtools for assessingthe impactof modeling

limits on intelligentsystems.

Review of Overall Problem

First and foremost, it is important to assert again that the types of modeling limit

discussed in this report are unavoidable. There is no simple (or complex) way to guarantee

that modeling limits will not affect an intelligent system. Consequently, methods and tools

are needed for discovering and remediating modeling problems.

34



As noted in the Introduction,this has important implications for softwaresafety

issues. Of most importance,sincewe cannotavoidmodelingproblems,it is necessary to

have a process that is likely to uncover these problems, both during design and ongoing use.

In this way, software can be certified as having been subject to a particular design and

evaluation process, even though it can not be guaranteed to be problem free.

It is essential that this process consider more than only internal consistency and

completeness. Extemal validity must also be a central issue. Further, validity must be

assessed in a context broader than the design basis of an intelligent system. It should be

possible to discover that requirements were inadequate.

What is needed to support such a validation process is methods and tools for

detecting, diagnosing, and compensating for modeling problems. In the near-term, we need

computer-based methods and tools for doing this efficiently during design and evaluation.

Eventually, we would like methods and tools that could be built into intelligent systems to

provide detection, diagnosis, and compensation during operational use of the system.

General Approach

The approach developed in this project is, in essence, a process of interactively

probing a knowledge base and comparing entities to the real world. Since we are concerned

with the "knowledge level," the real world inevitably is one or more humans with knowledge

about the domains of interest. Thus, whether we are concerned with physical, behavioral, or

operational phenomena, the real world is typically accessed via human experts.

The interactive probing follows the seven-step tracing process illustrated in Figure 4.

This process involves tracing through concept graph representations, while attempting to

locate sources of unacceptable presentations as judged by domain experts. Concept graphs

are a very general form of representation to which many types of intelligent system can be

transformed.

35



Ideally, the probing processshould include both positive and negative probes.

Positiveprobesyield strongconclusionswhenthey arerejectedby experts,while negative

probes yield strong resultswhen they are supported. In practice,as discussedbelow,

meaningfulnegativeprobescanbedifficult to generate.

Example Application

The general approach outlined above was applied for evaluating the display selection

knowledge base within the pilot-vehicle interface of the Pilot's Associate. This knowledge

base is represented as a concept graph involving the goals, plans, and information

requirements of the pilot's domain. Probing was initiated by the pilot rejecting all or a

portion of a display. Tracing then involved considering first information requirements, then

plans, and finally goals.

Experimental Results

Summarizing the results must begin with a caveat -- the experiment only involved

one scenario and one pilot. Clearly, more data and experience with the proposed approach is

needed before we can reach definitive conclusions. This, of course, begs the question of how

many scenarios and how many pilots? Our conjecture is that a diminishing returns

phenomenon will determine the answer to this question. In other words, evaluation should

continue as long as new types of problem are being encountered. This implies that some

level of evaluation is likely to be needed throughout the life cycle of an intelligent system.

Turning to the specific results of the experiment, 22 problems were identified in a 37

minute scenario. Many of these problems involved missing models (or components of

models) or missing inputs. Only one parametric problem was identified, which speaks well

of the models that were reflected in the knowledge base -- most of what was planned to work

in a particular way did perform acceptably.

Two general classes of root causes for these problems emerged.

models often involved missing decisions to employ functions, rather

First, missing

than missing

36



functionality. Second,missing inputs appearedto be related to a generalproblem of

insufficientinputsto capturetheportionof therealworldbeingmodeled.

The experienceaffordedby this experimentclearlyprovidedimportantinsightsinto

display selection in the pilot-vehicle interface. However, the primary goal was to

demonstratethe utility of the proposedapproachto validation. Overall, we found that

manualexecutionof the methodmadeit difficult to perform all of the tracing of interest.

Similarly, it wasdifficult to generatenegativeprobes"on the fly." To fully employ the

proposedapproach,acomputer-basedmethodor tool is neededto supporttheevaluator.

Supporting Knowledge Engineering

Building a knowledge engineering environment for evaluating intelligent systems

using the approaches proposed in this report appears to be a tractable problem. However,

would this environment or any results derived from it be useful in general? For problems

represented as concept graphs or semantic networks, the concepts of the environment would

be directly applicable. For example, the error monitoring function in the PVI uses a concept

graph to interpret the severity of pi.lot actions that may be errors. In another effort, we have

demonstrated a situation assessment function that interprets threat behavior using concept

graph representations.

In qualitative simulations of physical processes, at least some of the reasoning can be

modeled using concept graphs. Nodes could represent components and links represent their

interactions. Diagnosis of faults, as opposed to prediction of behavior, may be better

represented in other ways. Certain aspects of planning, such as hierarchical decomposition

of plans and description of situations, are suited to concept graphs. Conflict resolution may

not be well suited to concept graphs.

The knowledge engineering environment envisioned would be less well suited to an

expert system consisting of arbitrary rules. At least, early in development, access to internal

states (called test points on circuit cards) is essential. An expert system with no hierarchical

37



domaindecomposition(onebenefitof a conceptgraph)or, at least,no testpointsis, in our

opinion, asbad asFORTRAN programswith lots of interwovenGOTO statements.The

chancesof adequatelytestingsuchFORTRANprogramsarelow.

Elements of a Knowledge Engineering Environment

This section describes the problems faced by the knowledge engineer, why the

problems are difficult, and what the requirements are for better supporting the knowledge

engineer. These problems are based on our observations in this research and in our building

PVI knowledge bases in the Pilot's Associate program.

Given a discrepancy between a human expert and a knowledge base system, a

knowledge engineer may choose one of the following ways to remedy the problem.

Add a New Dg¢ision or Function. In relatively few cases a completely new

capability must be added. This activity requires designer creativity and insight and is

difficult to support. One of the most difficult aspects of design is predicting the

consequences of a design choice. The tool environment could make predictions only in well

structured situations and where it has access to considerable information about the design.

Currently, programming languages and CASE tools still lack the structure and the

representations necessary to support this activity.

Modify Structure. Knowledge base structure could be modified by adding new inputs

or new relationships (relatively easy) or by transforming or replacing all or part of the

structure (relatively hard). The interpretation of the data suggests that this activity needs to

occur frequently. There are a variety of ways in which this may be supported: editing,

design checking, visualization and execution. Each of these forms of support is described

below.

The simplest support is that of structured editing with a graphical display of the

knowledge bases. Structured editing, in which the editor has some representation of the

objects being modified, is better than text editing because object changes can be checked.

38



Forexample,if anewconceptsuchasanoiseabatementclimb planis addedto theplan-goal

graph,its parametersmaybecheckedfor definition.

Checkingcanbeextendedinto designrules,which aremoreglobal in purview than

thelocal editingchecks.For example,aftera noise abatement climb plan was added to the

graph, a design rule could detect that the raise gear action could not distinguish a normal

climb from a noise abatement climb. (As far as we know, there is no way to distinguish them

when the gear is raised.) The design rule would suggest combining the two plans into a

single plan normal climb with an additional parameter to represent whether noise abatement

procedures were being used. Design rules can aid the designer but cannot fully automate the

design problem. Full automation of design requires a complete model of the domain, an

undertaking at least as difficult as building an intelligent interface.

Visualization of a knowledge base would allow the designer to find limitations that

could not or have not been formulated as design rules. The designer needs to be able to

focus on particular aspects of knowledge in the knowledge base. For example, the

knowledge engineer must at some time look at the landing gear interpretation plan goal graph

from the perspective of mutual exclusion rather than interpretation. For example, in Figure 5

the mutual exclusion links are shown for various landing plans. The designer should be able

to see and to understand that the four plans are mutually exclusive. A great deal of

knowledge would be required for the environment to be able to infer this independently. For

this reason, the designer should solve the hard problems and the environment the easy and

mundane problems.

Modify Mapping of Inputs to Ou_tput. This is a more fine-grained activity than

structure modification. Mapping modification is concerned with the semantic aspects of the

predicates in production rules, the instantiation and matching of patterns, etc. Modification

occurs frequently and can be supported in a variety of ways.

When modifying the mapping, editing support is valuable. The variables referenced

in rules and their values can be checked against a data dictionary for sensibility. Design

39



normal low gear go

landing thrust up around

landing landing

Figure 5. Mutual Exclusion Links

40



rules can extend checking to more global considerations. For example, symbol manipulation

can show that goal X can never be reached through plan Y.

Other kinds of checking support -- overlapping rules, subsuming rules, etc. -- can also

be incorporated here. Visualization of the input-output mapping is also valuable for finding

errors. The most basic level of display is simply the inputs to a decision. In the context of

the intent interpretation problem discussed earlier, a domain expert could be asked directly if

the inputs are sufficient to make the decision. A second level of display is a decision table, a

more readable way to look at the rule base.

Display of the knowledge base while it executes is another form of support. For the

plan goal graph, visualizing the activation and deactivation of plans and goals during action

interpretation would be a valuable form of support. Execution could be driven by test cases

or data from a canned or live simulation run. By treating knowledge base execution as a

process to be debugged, the types of control and inspection typically exercised by a debugger

would be valuable.

Modify Inference Mechanism. Occasionally, the knowledge engineer needs to

examine or even modify the code of the inference mechanism. For example, the intent

interpretation knowledge base needs to be able to detect the termination of a plan or goal that

is no longer being pursued by the human. One mechanism, not entirely sufficient by itself,

by which this happens is the activation of new plans and goals that are mutually exclusive

with (and thus delete) the ignored plans and goals. Another mechanism is required, however,

because plans and goals may be abandoned simply by not advancing them rather than

activating any new plans and goals to replace them.

If the new mechanism does not fit into any existing intent inference mechanism, it

has to be added by modifying the code of the inference mechanism. Such changes are

relatively infrequent and are as difficult to support as adding a new decision or function.

Knowledge En_neering Test Stand. Even if the knowledge engineering environment

does not support a specific application, some of the principles espoused here can be applied

41



to all knowledge-basedsystems.As electronicsdesignerslearnedsometime ago,engineered

systemsshouldbe designedto be tested. Testpoints arepart of everycircuit, and large

integratedcircuits incorporateextralogic to makeinternal statesaccessible.While internal

stateaccessis often for circuit repairandmanufacturingquality assurance,the conceptis

applicableto all software.

Theknowledgeengineeringenvironment,whateverit is, fills therole of a test stand

or test jig for a traditional engineeredsystem. Even if accessto internal state is not

permitted,theteststandshouldsupportcreatinginputsfor theengineeredobject. Of course,

no teststandcanfully exercisethesystem.Theideais to exerciseit asfully aspossibleasa

unit beforemovingto thenext,morehighly integratedtest.

The knowledgeengineeringenvironmentalso supportsthe conceptof concurrent

engineering.That is,designcanbecloselyfollowed by test. Theearlierproblemsarefixed,

the less their cost to repair. If testingis easier,then more of it can be doneearly. A

knowledgeengineeringenvironmentthat simply supportedmore rapid feedbackto the

knowledgeengineerwouldresultin abetterendproduct.

Although not addresseddirectly in this report, the notationsused for describing

knowledgebasesareinadequateor nonexistent.Traditional softwarenotationscanbeused

to describeinferenceengines,conflict resolution,etc. Thesenotationsdo not applywell to

the specific knowledgein knowledgebases. It is likely that new notationsneedto be

developedto describeclearlythestructureof specificknowledge.

Inte_ation of Design and Evaluation

Clearly, the proposed approach to validation has important implications for design.

The need to design knowledge bases for testability is an obvious implication. Equally

important, however, is the desirability of integrating design and evaluation -- in the current

parlance, to perform concurrent engineering of intelligent systems. The approach espoused

and illustrated in this report can provide the basis for this concurrent engineering, as well as

42



thecontinuousimprovementnecessaryto assuringsoftwaresafetyandavoidingunacceptable

consequencesof unavoidablemodelinglimits.

ACKNOWLEDGEMENT

This researchwassponsoredby theNASA LangleyResearchCenterunderContract

No. NASI-19021. WendellR. Ricks of NASA Langley is the technicalmonitor of this

project. The authorsgratefullyacknowledgeMr. Ricks'helpful commentsand suggestions

asthisworkprogressed,aswell astheusefulinputsof Dr. Kathy Abbott.

REFERENCES

Casti, J.L. (1989). Alternate realities: Mathematical models of nature and man. New York:
Wiley.

Chi, M.T.H., Glaser, R., & Farr, M.J. (1988). The nature of expertise. Hillsdale, NJ:
Erlbaum.

Glymour, C., Scheines, R., Spirtes, P., & Kelly, K. (1987). Discovering causal structures:
Artificial intelligence, philosophy of science, and statistical modeling. Orlando, FL:
Academic Press.

Newell, A. (1981). The knowledge level. AI Magazine, 2, 1-20.

Nguyen, T.A., Perkins, W.A., Laffey, T.J., & Pecora, D. (1987). Knowledge base
verification. AI Magazine, 8, 69-75.

Parnas, D.L., van Schouwen, A.J., & Kwan, S.P. (1990). Evaluation of safety-critical
software. Communications of the ACM, 33, 636-648.

Rouse, W.B. (1980). Systems engineering models of human-machine interaction. New York:
North Holland.

Rouse, W.B. (1990). Design for success: A human-centered approach to designing
successful products and systems. New York: Wiley.

Rouse, W.B., Geddes, N.D., & Curry, R.E. (1988). An architecture for intelligent interfaces:
Outline of an approach to supporting operators of complex systems. Human-
Computer Interaction, 3, 87-122.

Rouse, W.B., Geddes, N.D., & Hammer, J.M. (1990). Computer-aided fighter pilots. IEEE
Spectrum, 27, 38-41.

43



Rouse,W.B., Hammer, J.M., & Lewis, C.M. (1989). On capturing human skills and
knowledge:Algorithmic approachesto model identification. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-19, 558-573.

Rouse, W.B., & Hunt, R.M. (1982). Issues in the identification of models of human behavior.
Proceedings of the 6th IFAC Symposium on Identification and System Parameter
Estimation.

Rouse, W.B., & Morris, N.M. (1986). On looking into the black box: Prospects and limits in
the search for mental models. Psychological Bulletin, 100, 349-363.

Rushby, J. (1988). Quality measures and assurance for AI software (NASA CR-4187).
Hampton, VA: NASA Langley Research Center.

44



APPENDIX A: DATA TRANSCRIPTS

Adaptive aiding issues messages saying "turned on X" and "tuned radio

channel X to frequency Y." These messages should not be shown. If the action is pre-

briefed to occur at a certain time or under certain conditions and it does so occur, then it

should not be mentioned. If a frequency change were made, then the message would be

"going AWACS" rather than frequency. The cause of this problem was that the PVI did not

have a satisfactory mechanism for determining whether a change should be pointed out to the

pilot. This problem had been identified before, but there was insufficient time to solve the

problem.

The cause was that the decision whether to display such information was not

identified early enough for it to be solved before it was implemented. Not displaying pre-

briefed plans is only a part of the solution. More generally, any plan that would be strongly

expected to be executed automatically would not need to be displayed. Pre-briefed plans are

a special case of this.

Low observable (LO) cell formation was proposed -- the internal name is

radar-cell-formation. The pilot did not know the meaning of "LO-cell-formation." There are

two problems here. First, LO-cell-formation probably means "close formation," not radar

cell formation, even though they sound the same*. Second, the intent inference function

failed to determine what formation the pilot and wingman were already in.

Only a domain expert could have caught this problem. The problem could be caught

during testing if the test stand could show this message appearing in a crewstation mocked

up on a CRT display.

* LO-cell-formation would mean that the two aircraft would fly in such a way that their combined signature
would appear to be a single blip. This practice prevents threat sensors from determining how many aircraft are
present in the blip. A radar-cell-formation is used for heavy aircraft to fly through bad weather. (Fighter
aircraft call the same formation radar trail.) The second aircraft is several miles behind the lead aircraft. The

second aircraft uses radar to keep track of the lead and remain in position.

45



The centerthreatsituationdisplaydoesnot completelyshowa threatthat is

right on theedgeof the screen.The softwareneedsto considerthe screento be slightly

smallerthanits measurementswhehsettingthemagnification/rangeof thisdisplay.

A goodhumanfactorscritiqueof thecrewstationmight havecaughtthis problemif

theconditionswereright to repeattheinput conditionsexactly.

Radar antennacenter positions for pilot's aircraft and wingman were

proposedasplans. Seecommentat 8:11:42.

8:12:55 Trail dots were on for the pilot's aircraft and wingman, which was

unnecessaryandextraclutter. Trail dotsaredisplayedat thepreviouspositionsof anaircraft

to give thepilot anideaof its previousmovement.Themechanismthatcausedtheerror was

thattrail dotswerecontrolledonly for threataircraft. Thedotswereturnedon for thepilot's

aircraftatinitializationandneverconsideredagainby thesoftware.

The position of the pilot's aircraft on the horizontal view needsto be

controlledmore fully. If thereareaircraft behindthepilot's aircraft (or expectationof the

same),thesymbolfor thepilot'saircraftneedsto bemovedtowardthecenterof thescreenin

orderto seebehind(assumingthesedataareavailable). Outboundon amissionwould lead

to theexpectationof aircraftbehindthepilot's aircraft. A missiondeepintoenemyterritory

would forcea selectionof 150nmrangeall thetime. Thispositionof thepilot's aircraftwas

very low on thescreenduringthereplay. At times,thepilot couldnot seeall of thestrikeor

escortaircraft. Magnification(range)could be modified to handle this, but so could the

relative position of the pilot's aircraft.

On the center threat situation display, the pilot could we can just barely see

Knight 03 and 04. The perspective view does not show all of the F-15E aircraft.

Perspective view should show more of the future path rather than just what is

directly ahead.

The cause of the previous two problems was that the model that controlled the

perspective viewpoint did not receive the correct form of input from the plans. In other

46



words, the representation of the input to the model needs to change. The model for

controlling the perspective eyepoint received eyepoint offsets as information requirements

from various plans. This is the wrong space or dimension for this kind of information

requirements. Instead, the information requirements should describe geometric quantities--

such as range, beating, and altitude differences of particular threats and friendlies--that are

needed for the active plans. The model would then compute a perspective viewpoint that

best showed these quantities. In the case of the second problem, the information requirement

should be to show a certain amount of the future flight path on the display.

Some SAM sites have just appeared on the tactical display. The type of

SAM is not displayed but should be. The route of the pilot's aircraft was to pass close to

these sites. As soon as a threat shows up, it should be identified for the pilot if possible,

assuming the pilot is not busy doing something else.

This information is needed because of a display-oriented event -- the appearance of

SAM sites on the edge of the screen. This required output was not planned for in the design.

The PVI would display the type of threat but only if the SAM site did something, such as

emit, or if the pilot's aircraft passed fairly close to the SAM site.

Perspective view does not show future route or any cooperating flights. See

8:14:01.

Numerous SAM sites appear just over the forward edge of the battle area.

They should be identified with tags but are not. See 8:17:06.

Radar volume change is announced but it should not be because it is already

visible on the screen. See 8:11:42. Despite the pilot's comments, mere visibility on the

displays is not reason enough to announce.

Interchange of flight management and sensors displays on the left hand CRT.

The left CRT may display two system displays side by side and one menu beneath. The

software will sometimes interchange the displays. The perceptual phenomena (i.e., flashing)

causing pilots to object to this change is not part of the model that makes this decision.
i

47



Thecauseis thatmovingdisplaysbetweenthetwo areasis doneby theprogram,but

duringdesignthere wasno thoughtthat theremust be a consciousdecisionto move the

displays.

Centerdisplayswitchesto 200 nmrange. This behaviordid not makesense

to thepilot. Thereasonit wasdonewasthatthereareno nearbythreats.Consequently,the

rangegoesto maximum. Onemight interpretshowingthis muchareaon the screenasan

errorif therewasnosensorcoverageof thearea.Forexample,whenin friendly territory, the

AWACS sensordatais providedby datalinkto thepilot's aircraft. Whenin enemyterritory,

theAWACScoverageis minimal or non-existent.To show200 mile rangewhenthereis no

coveragebeyond100milescouldbeconsideredmisleading.

Two labels are displayed over slightly offset threats,making reading

impossible. The PVI was informed that both threatswere in the samegroup. The PVI

shouldhaveputuponly asinglelabelbut it did notconsiderthreatgroupingwhenaskingfor

labels.Anotherpossibleinterpretationis thatthepositionsof thethreatson thescreenshould

beconsideredwhen labelsare requested.If the labelsoverlap,they areat bestdifficult to

read.

CenterCRTdisplayswitchesto 50 nm rangeto view anti-radiationmissile

(ARM) engagement.This causedthepilot's aircraft to loseview of theattackandthestatus

of its ownAMRAAM missile,which is extremelyimportant.This situationis notdominated

by defensiveconcernsalone. Basically, the pilot's aircraft has to wait until AMRAAMs

switchto activeself-guidancebeforeradarcanbe turnedoff (which will defeattheARM).

Themodelassumesno interactionbetweenoffensiveanddefensiveconcerns.

Right handCRT goesto side view to better show missile engagement.

However,sincethe anti-radiationmissile is anair-to-air,the sideview doesnot showvery

much. The geometricplaneof the attack is just a line when viewed from the side. A

horizontalview wouldbebest,providedtheattackwasprettymuchplanar.

48



The causeis similar to that of 8:14:01 and 8:14:36. Event-based display selection

needs to reason with geometric quantities. Existing reasoning only worked for surface-to-air

missiles, not air to air missiles.

Center CRT on 200 nm range. This has the same interpretation as 8:32:35.

Right CRT on 400 nm range and horizontal view to show new mission route

to get pilot's aircraft home. Unfortunately, 400 nm is not really right. The range that is right

needs to be computed from the data in the route itself. Also, the route only needs to be seen

to the forward edge of the battle, not all the way home. One might want to show the whole

route if the pilot's aircraft was to land at a base other than the one initially planned. The

cause of this problem is that the model needs to consider geometry, including numerical

values, not just symbols.

49



Nahorlal _,_or',_u,_C S and

S_,_c e AL:Imtn_s1_alJo,n

1. Report No,

NASA CR-4336

4. Title and Subtitle

Assessing the Impact
Intelligent Systems

Report Documentation Page

2. Government Accession No.

of Modeling Limits on

7, Author(s)

William B. Rouse and John M.

9. Performing Organization Name and Address

Search Technology, Inc.
4725 Peachtree Corners Circle
Norcross, Georgia 30092

12. Sponsoring Agency Name and Address

National Aeronautics and

Langley Research Center
Hampton, VA 23665-5225

Hammer

Space Administration

3, Recipient's Catalog No.

5. Report Date

November 1990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

324-01-00

11. Contract or Grant No.

NAS1-19021

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring ,_gency Code

15. Supplementaw Notes

Langley Technical Monitor:
Final Report - SBIR Phase I

Wendell R. Ricks

16. Abstract

This report is concerned with validating the knowledge bases underlying
intelligent systems. A general conceptual framework is provided for
considering the roles in intelligent systems of models of physical, behavioral,
and operational phenomena. A methodology is described for identifying limits
in particular intelligent systems, and the use of the methodology is illustrated
via an experimental evaluation of the pilot-vehicle interface within the
Pilot's Associate. The requirements and functionality are outlined for a
computer-based knowledge engineering environment which would embody the approach
advocated and illustrated in earlier discussions. Issues considered include

the specific benefits of this functionality, the potential breadth of
applicability, and technical feasibility.

17. Key Words (Suggested by Author(s))

Artificial intelligence
Functional validation

Concept graphs
Pilot-vehicle interface

18. Distribution Statement

Unclassified - Unlimited

Subject Category - 59

19. SecuriW Cla_if. (of this report)

Unclassified

20. SecuriW Cla_if. (of this page)

Unclassified

21. No, of pages

52

22. Price

A04

NASA FORM 1626 OCT 86 NASA-Langley, 1990
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171


